Atmospheric Deposition and Re-emission of Mercury Estimated in a Prescribed Forest-fire Experiment in Florida, Usa Ralph
نویسنده
چکیده
Prescribed fires are likely to re-emit atmospherically deposited mercury (Hg), and comparison of soil Hg storage in areas affected by prescribed fire to that in similar unburned areas may provide cross-validating estimates of atmospheric Hg deposition. Prescribed fires are common in the southeastern United States (US), a region of relatively high Hg deposition compared to the rest of the US, and are thus a potentially significant source of re-emitted atmospheric Hg. Accordingly, Hg was determined in soil layers of a prescribed fire experiment in a Florida longleaf pine forest. The Hg deficit in the annually burned forest floor relative to the forest floor unburned for 46 years (0.180 g ha-' yr-') a p e d to within 5% of an independent estimate of Hg deposition for this site based on a regional monitoring network and computer model (0.171 g ha-' yr-I). Consideration of other potential inputs and outputs of Hg suggested that atmospheric deposition was the primary input of Hg to the site. If extrapolated, these results suggest that prescribed fires in the southeastern US mainly re-emit atmospherically deposited Hg and that this re-emission is less than 1% of total US anthropogenic emissions. However, emissions at other sites may vary due to the possible presence of Hg in underlying geological strata and differences in fire regime and levels of atmospheric Hg deposition.
منابع مشابه
Atmospheric mercury deposition to Lake Michigan during the Lake Michigan Mass Balance Study.
Wet and dry mercury (Hg) deposition were calculated to Lake Michigan using a hybrid receptor modeling framework. The model utilized mercury monitoring data collected during the Lake Michigan Mass Balance Study and the Atmospheric Exchange Over Lakes and Oceans Studytogether with high-resolution over-water meteorological date provided by the National Oceanic and Atmospheric Administration (July,...
متن کاملForest Structure Affects Soil Mercury Losses in the Presence and Absence of Wildfire.
Soil is an important, dynamic component of regional and global mercury (Hg) cycles. This study evaluated how changes in forest soil Hg masses caused by atmospheric deposition and wildfire are affected by forest structure. Pre and postfire soil Hg measurements were made over two decades on replicate experimental units of three prefire forest structures (mature unthinned, mature thinned, clear-cu...
متن کاملModeling and Mapping of Atmospheric Mercury Deposition in Adirondack Park, New York
The Adirondacks of New York State, USA is a region that is sensitive to atmospheric mercury (Hg) deposition. In this study, we estimated atmospheric Hg deposition to the Adirondacks using a new scheme that combined numerical modeling and limited experimental data. The majority of the land cover in the Adirondacks is forested with 47% of the total area deciduous, 20% coniferous and 10% mixed. We...
متن کاملThe Puzzle of Drastic Reduction of Point Source Emissions and Continuing High Deposition of Mercury in Florida
This report shows that the combined emissions of mercury from major point sources of mercury . in Florida decreased from about 4.8 short tons in 1994 to 1.3 tons in recent years. A similar reduction of mercury emissions was reported by Florida DEP for south Florida where the Everglades Park is located: Point sources of emissions decreased from a high of 3.4 short tons (3,100 kg) of mercury in 1...
متن کاملA note on elevated total gaseous mercury concentrations downwind from an agriculture field during tilling.
Elevated mercury concentrations were measured at the University of Connecticut's mercury forest flux tower during spring agricultural field operations on an adjacent corn field. Concentrations at the tower were elevated, a peak of 7.03 ng m(-3) over the background concentration of 1.74+/-0.26 ng m(-3), during times when the prevailing wind was from the direction of the corn field and during per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006